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Introduction 
 

Most of this introduction is based on my editorial (Misztal, 2007).  
Some 20 years ago there was a shift in governmental funding away from animal breeding 

and quantitative genetics to almost exclusively molecular genetics. The molecular genetics offered 
the possibility of fast genetic progress based on mainly lab work. Old quantitative work that 
required extensive training in quantitative genetics, statistics, and programming, seemed obsolete. 
Great hopes were put into finding markers for major genes (QTL) that could help solve the new 
challenges. However, few markers/QTLs were detected, that those that were detected had their 
estimated effects inflated.  

The new focus in animal breeding is genomic selection. In this methodology, one estimates 
effects of individual haplotypes or uses SNP-derived relationships. The genomic selection has an 
opposite assumption from the previous effort in markers but same as in “black box” genetics: that 
there are a large number of genes responsible for a trait. The lab work is now done by commercial 
companies using SNP chips so the old lab skills are mostly obsolete. 

The genomic selection brings quantitative genetics bask into focus. The recent studies show 
that SNP effects are seldom effects of major QTL, that SNP effects are not forever but need to be 
re-estimated, that large amounts of genomic data is required for accurate predictions, and that 
simple models can create wildly inflated and inaccurate estimates. Also that poor or antiquated 
models used in a genetic evaluation result in poor genomic estimates, that GxE is not negligible, 
and that crossbreeding needs to be accounted for.  

This paper focuses on current experiences with the genomic evaluation and especially with 
the single-step GBLUP. These experiences provide information of which skills are useful for 
successful animal breeding in the genomic age.  
 
Methods for genomic selection 
 

Currently, the most common scenario in obtaining the genomic prediction via SNP arrays 
involves a multistep approach. It includes 1) running a regular evaluation, 2) extracting pseudo-
observations for genotyped individuals, e.g., daughter deviations or de-regressed EBV, 3) 
estimating SNP effects using pseudo-observations as records, and 4) possibly combining the 
genomic predictions with parent average (VanRaden, 2008).  For smaller populations, one can run 
step 3 with phenotypic records; however, the information on relatives is not utilized. Step 3 usually 
requires estimating weights for SNP effects, mostly via Bayesian procedures such as BayesX 
(where X could be A, B, C. etc.)  (Meuwissen et al., 2001; Hayes et al., 2009). A procedure in 
which all weights are assumed equal leads to a genomic relationship matrix G and is called 
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GBLUP(Habier et al., 2007).However, when weights are known, methods based on G and 
estimation of SNP effects are equivalent.  

Current experiences with SNP panels of around 50-60k indicate that a) at least 1000 
genotypes of high accuracy animals are required for a noticeable increase in accuracy and b) 
GBLUP is almost or as accurate as the BayesX procedures (VanRaden et al., 2009; Hayes et al., 
2009). These indicate that the number of QTL in quantitative traits is high (Daetwyler et al., 2010) 
and subsequently the genomic selection works mostly by capturing relationships than by estimating 
effects of major genes. Improvements with large SNP of over 500k provide only a small increase of 
accuracy as the effect of increase SNP can be viewed as reducing a sampling error of G to a finite 
number of SNP. Thus the primary mode of the genomic information in genetic evaluation is 
improved relationships among animals that also include the information about the Mendelian 
sampling (Goddard, 2010). 

The multi-step methodology is complicated and includes several approximations. Pseudo-
observations are dependent on other estimated effects and approximated accuracy of EBV. Models 
in BayesX are usually simple and single-trait that additionally ignore non-genetic covariances 
among the residuals. The index is dependent on the approximated accuracy of EBV and is hard to 
construct. All the approximations reduce accuracy and can inflate GEBV. Also, because of 
complexity, the multistep approach is prone to errors, which have been observed in many 
commercial releases in dairy.  

As nearly all the genomic information is included in a genomic relationship matrix, Misztal 
et al. (2009) proposed a single-step methodology where pedigree and genomic relationships are 
combined into matrix H, which is subsequently used in BLUP.  Then, compared to a multistep 
evaluation, step 1 is modified to use matrix H, and steps 2-4 are eliminated. Legarra et al. (2009) 
and Christensen and Lund (2010) developed such a matrix, and Aguilar et al. (2010) demonstrated 
that a single step methodology can be simple, fast and accurate. The purpose of this paper is to 
present the theory and experiences with the single step methodology (ssGBLUP).  

 
Single-step genomic evaluation (ssGBLUP)  
 

Legarra et al (2009) developed matrix H that combines pedigree and genomic relationships: 
 

.
 

 
where subscripts 1 and 2 denoted ungenotyped and genotyped animals, respectively, and G is a 
genomic relationship matrix as in VanRaden (2008). Aguilar et al. (2010) and Christensen and Lund 
(2010) found that the inverse of matrix H as above has a simple form: 
 

. 
 
Replacing A-1 with H-1 in existing software for genetic evaluation or for estimation of variance 
components makes those programs applicable for genomic studies.  
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Efficient computation of H-1 requires efficient computation of G-1 and A22
-1, where the last 

matrix is an inverse of a pedigree-based relationship matrix for genotyped animals only. Aguilar et 
al. (2011b) demonstrated that with efficient computing, such matrices can be created in a few 
minutes of computer time for about 10k genotypes and in about 1 hr time for 30k genotypes.  

Matrix G is calculated by matrix multiplication(VanRaden et al., 2008). Let pj be allele 
frequency for genotype “2” in marker j, and let mij be genotypes for i-th animal and j-th marker 
such that  

 

so that average mi. is 0.Then G =MM’/k, where the scale parameter kis usually computed as:  
 

 . 
 
Gene frequencies affect the mean and scale of G. When equal gene frequencies are assumed, 

averages of the diagonal or off-diagonal elements may be much larger than in A22.  Scaling G by 
regression on Aas in VanRaden (2008) may result in Gnot being positive definite. With current 
allele frequencies, the average off-diagonal elements are close to 0. Matrix G can be made 
compatible with A22 when current allele frequencies are used and when G is scaled for same 
averages of diagonal and off-diagonal elements as A22 (Chen et al., 2011b).  

When genotyped animals include clones, G as constructed above is singular and cannot be 
inverted. Therefore, a common strategy is to replace G with αG + (1-α) A22, where α is close to 1.0, 
e.g., 0.95. In Christensen et al. (2011), the optimal α was 0.8 although variations in accuracy with 
different α were minimal.  
 
Applications of ssGBLUP 
 

ssGBLUP has been used for several large-scale analyses including dairy (Tsuruta et al., 
2011; Aguilar et al., 2011a; VanRaden, 2012), pigs (Forni et al., 2011; Christensen et al., 2012) and 
chicken (Chen et al., 2011a).Experiences indicated that 1) ssGBLUP is usually as accurate as or 
more accurate than multistep methods, 2) the inflation of GEBV is usually smaller, and 3) the 
operation is much simpler. Another reason for using ssGBLUP is ability to account for selection 
bias when selection is based on genotypes only (VanRaden, 2012). 

Some experiences are species related. For example, there are little differences in GEBV with 
different G in dairy, where the “training” animals are high-accuracy bulls. Different G affects 
estimates of variances components, calculated accuracy and to a smaller degree, real accuracy in 
pigs and chicken (Forni et al., 2011; Simeone et al., 2011). Chen et al (2011b) found that the scale 
of G influences ranking of genotyped versus ungenotyped animals. The optimal G would have 
same averages of diagonals and off-diagonals as A22. Vitezica et al. (2011) derived a formal proof 
and showed that, under well-formed G, ssGBLUP is more accurate and less biased than a multistep 
approach. The optimal scaling is equivalent to: 
 
Gc=  Fst/2+(1-Fst)Gc 
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Where Fst is a fixation index of genotyped animals relative to the base population and Gc is a 
genomic relationship matrix computed using realized allele frequencies. In practice, Fst is equal to 
twice the average of off-diagonals of A22. 
 
ssBLUP in chicken 
 

ssGBLUP was applied in chicken for a large experiment (Chen et al, 2011a).  However, 
results of selection over a few generations were short of expectations (Muir et al., 2012).  These 
were caused by many problems including incorrect genotypes, initial methodology issues, use of a 
large ungenotyped population that had close ties only to the first generations of genotyped animals, 
and many other reasons (Muir et al., 2012). Therefore, the practical results of ssGBLUP or any 
other methodology for genomic selection in a commercial situation is dependent on attention to 
detail,the mature methodology, and knowledge of issues of genomic selection specific to a given 
population.  
 
Convergence and biases 
 

Poor convergence rate and/or large reranking have been observed in several analyses. These 
problems were traced to incompatability between G and A22.  For well formed G and with many 
generations of complete pedigrees, G and A22 are very similar, with SD < 0.04 (Wang et al., 2011). 
However, differences exceeding 1.0 are observed in practice. Such differences are due to short or 
incomplete pedigrees, pedigree mistakes, incorrect assignment of genotypes, poor quality of 
genotypes, and unaccounted presence of multiple/lines breeds.  

In general A22 is affected by the maximum number of generations, the completeness of 
pedigree. It is unaffected by multiple-breeds or lines. In A, separate lines and breeds are not realted. 
In general, G is unaffected by pedigrees. However, it is affected by gene frequencies, number of 
SNP, quality of genotypes, and scaling. These factors, when unaccounted for, can cause large 
differences between G and A22, and subsequently poor convergence rate with iterative methods.  

One particular source of differences between G and A22 and subsequently poor convergence 
rate is heterogeneous base populations or missing parents at many generations. One remedy here is 
to cut the number of pedigrees to 4-5 so that the effect of missing parents before is eliminated. 
Experiences indicate retained or even slightly increased accuracy after cutting.  

Another important source of difference is presence of multiple lines or breeds. In such a 
case, the distribution of the diagonal of G may be multi-modal (Simeone et al., 2011a).  The 
solution is to construct G reflecting differences among line/breeds, e.g., such as in Harris and 
Johnson (2010). The differences are different allele frequencies and Fst for each pure line. The issue 
of multibreed ssGBLUP is currently a hot research topic. 
 
Fine tuning 
 

The theory of H makes many assumptions, and many of these many not hold in practice. 
Those assumption include same genetic parameters in the genotyped sample as in the complete 
population, and exixtence of compete data to account for selection bias. Several studies found that 
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better accuracies and lower biases of GEBV can be achieved by fine-tuningα, β,τ and ω in H 
defined as below: 
 

 

 
Generally, α≈0.8 and β=1-α. Also, τ<1 and ω<1. Note that large ω causes H to be non-

positive definite, causing slower convergence or even divergence when MME are solved by 
iteration, while smaller ω will generally cause better convergence. Another mechanism to improve 
the convergence rate is to remove old pedigrees or even old data altogether, especially when the 
base population is heterogenous, i.e., parents are missing across generations.    
 
Large number of genotypes 
 

When G-1 and A22
-1 are computed explicitly, the cost is cubic with the number of genotypes. 

Subsequently, costs with > 50-100k genotypes are excessive.  Research in several labs (Harris and 
Johnson, VanRaden, Legarra and Ducrocq) focuses on implementation of ssGBLUP where the 
inverse is not needed. These methods rely on the fact that the product of Gq can be obtained with 
linear time with respect to the number of genotypes as: 
 
 Gq=MDM’q=(M(D(M’q))) 
 
when the products are computed sequentially as products of a matrix and a vector.  
 
Approximate accuracies 
 

The additional accuracy of GEBV due to the genomic information can be expressed in terms 
of record equivalents (RE).  A contribution due to the genomic information from animal j to animal 
i in terms of RE is approximately (Misztal et al., 2012): 
 

 
 

As the mean difference between the genomic and pedigree relationship is very small, with 
SD < 0.04 in poultry as found by Wang and Misztal (2011), individual contribution is very small. 
However, large differences between the relationships due to mistakes in pedigree or genotypes 
greatly inflate the RE. Also, the contribution is small from animals with small own accuracy. This 
means that a genomic prediction benefits much more from genotyping animals with high accuracy 
(males with many progenies) than from animals with own records only.  
 
The formula above has mainly an educational value as contributions from many animals overlap, 
creating double counting. For formulas that seem to work well but are more cryptic, see Misztal et 
al. (2102). 
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Genome wide associations with ssGBLUP 
 

Much of genomic work especially in academia aims at finding genome-wide associations 
(GWAS) and therefore solutions of SNP effects are desirable. ssGBLUP can be adapted for GWAS 
(Wang et al., 2012). This involves the following steps: 
 

1. Convert GEBV to SNP effects 
2. Estimate individual SNP variances 
3. Incorporate variances in G 
4. Possibly recompute GEBV and iterate 

 
Experiences indicate that such methodology is similar in accuracy to BayesB, however, at a 

muchlower costs. It also allows GWAS with effects that are hard to account for with multi-step 
methods, such as maternal or random regressions, and complicated models including multiple-trait.  

The extra benefit of  GWAS is availability of SNP weights. Such weights can be 
incorporated into G, possibly increasing the accuracy for traits with major genes. However, in 
multiple-trait analysis the genomic relationship matrix needs to be identical for all the traits. In such 
analysis, major markers can possibly be modeled as separate effects, different for each trait. 
 
Conclusions 
 

The single-step methodology provides for easy incorporation of genomic data into a genetic 
evaluation. The methodology is ready for single-breed evaluations with up to 50k genotypes; 
extensions to multiple breeds and larger number of genotypes are under way. Also, tools for 
approximating accuracies and for exploring genome wide associations are available. 

The realized accuracy of a genomic evaluation is dependent on many factors, including the 
quality of genomic data and the structure of the population. In commercial setting, the use of any 
genomic methodology needs to be accompanied by on-going validation and subsequent 
troubleshooting if the results fall short of expectations. See FAQ on genomic selection (Misztal, 
2011). Such work needs the expertise of well-trained quantitative geneticists who possess 
substantial quantitative skills while being able to understand the peculiarity of the molecular data 
and the real architecture of traits.  
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